How Writers Use Misleading Graphs To Manipulate You

By Ryan McCready, Aug 10, 2017

misleading graphs

In this post-truth era, graphs, charts, and tables are being used to skew data or ideas like never before.

Especially with the veracity that some of these topics spread across social media.

Misleading graphs or charts are perfect for inserting an incorrect idea into a narrative. And that idea can spread around the world in seconds before the truth can even get its pants on.

All it takes is a single graph from a less than reputable source, blasted out to a list of followers, to change a story worldwide.

The data doesn’t even have to be bad; it could just be presented in a misleading way. I mean there is a whole Wikipedia page, Reddit community, and hundreds of articles on how graphs can be used to misinform readers.

Now, I can’t make these data skewing creators stop, but I can help you spot these bad graphs and charts when they crop up. Because once you know what you are looking for, you can avoid them–or even call our their creators!

Plus, I will show you how these misleading graphs SHOULD have been created and how you can improve your own data visualizations!


1. Omitting Baselines

Omitting baselines, or the axis of a graph, is one of the most common ways data is manipulated in graphs. This misleading tactic is frequently used to make one group look better than another.

In the data visualization world, this is known as a truncated graph.

Truncating graphs can make something that is not very significant look like a massive difference.

Just take a look at the first example below that compared how Democrats, Republicans, and Independents felt about a certain issue.

(I actually have used this graph before to show people also how they should have used color in their data visualizations!)


misleading graphs


If you took a cursory glance at this graph you would probably think that Democrats agreed almost three times more than Republicans and Independents. But a closer look shows that difference was only about a 14% difference. This graph was obviously created to push an incorrect idea about a certain group.

If they wanted to properly show the differences, or just report the facts objectively, they could have included a more accurate graph like this:


misleading graphs

Whoa, that is much better!

Another example of using good data in a misleading graph to fool readers comes from Fox News (which actually could win a medal for their many deceptive graphs and charts).


misleading graphs


In this graph, they are trying to do the same thing as the previous example: deceive their audience. But the margin is a lot closer, with only an 11% increase.

That didn’t stop Fox from publishing a graph that makes one tax rate seem almost 4x larger than the other.

Oh, and the small numbers that they used not only on the axis but also as labels almost confirms they wanted to mislead their audience.

Here is how it should have looked (as you can see, the difference is not that impressive):


misleading graphs

It is important to remember that axis manipulation like this is not limited to just politics or hot button issues.

You also see it in tech:


misleading graphs


In business meetings:


misleading graphs


And even in nutrition information:


misleading graphs


Honestly, wherever people are using data visualizations to backup their claims, you will probably find someone misleading graphs like the examples above.


2. Axis Manipulation

A common trick of the graph manipulator is to blow out the scale of a graph to minimize or maximize a change. This is known simply as axis changing in the data visualization world.  

Axis manipulation is almost the opposite of truncating data, because they include the axis and baselines but change them so much that they lose meaning.

This is a very powerful tool on social media and can be used to push a false narrative.

For example, take a look at this graph of global warming data from the National Review:


misleading graphs


They are intentionally including temperatures from -10 degrees up to 110 degrees to make that line as flat as they can. All to push an idea that global warming is not real or something. Thankfully, those who are more respectable with data called them out on their misinformation immediately.

And the good people at Quartz decided to fix it for them, which you can see below:


misleading graphs

The saddest thing is that these organizations know exactly what they are doing.

What should frustrate you, the reader, is that both of these organizations had access to the same data and tools. But only one decided to present it in a trustworthy manner.

I mean, I could do the exact same thing using data about my beloved Arkansas Razorbacks.

In this example, I looked at their win totals over the last 15 or so years and put them on a normal line graph. But I then took the same approach as the previous graph and manipulated the y-axis:


misleading graphs

With those changes I can make it looks like the Razorbacks have been winning fairly consistently over the past few years.


But if you follow college football you will know that we have not been winners most of the time, and the graph should look a little closer to this:


misleading graphs

This one is not so inspiring…

Again, this is the exact same data, presented in the same type of data visualization, but each graph tells a completely different story.

It only took one tiny change to completely flip the story. And that should be terrifying to you.

Well, not in the context of college football, but this tactic is being used in politics, on social media and in business content to push an agenda.


3. Cherry Picking Data

Another way to skew data is by only including certain parts of the data in your misleading charts or graphs. Usually it is only the data that puts your viewpoint in a positive light or your opponent’s in a negative light.

For example, only including a month where there was a sales spike and not the rest of the yearly data. It is not technically wrong but it is definitely misleading.

This is often called improper extraction, when only a certain chunk of data is included.

This is more common in graphs that have time as one of their axis. I mean it is pretty easy to start with a year that confirms what you are trying to say.

You could also call this tactic omitting data. When–you guessed it–some of the key data is just left off the graph.

Both improper extraction and omitting data are things that you want to avoid!

Let’s start with an example of improper extraction, because I don’t think I need to show you what omitting data looks like. In this case, I struggled to find some real world examples, because who is really going to admit they left out data.

(Not many people!)

But I did find this great example from Tejvan Pettinger on how someone could cherry pick some data to make a compelling but misleading statement.

In the first graph below, a reader could obviously be mislead into thinking that the UK National debt has never been higher! This graph could be used to justify a politician voting on some piece of legislation that would lower the debt.  


misleading graphs


However, when you take a look at the full time series, you can see that national debt is actually pretty low in comparison.


misleading graphs


This fictitious creator decided to also start the graph right at a low point and falsely illustrate that it could have been rising from zero to these rates. They also stuffed the graph with a bunch of random points to make it seem like the data set was much larger, when it only covered 10 years!

If you want another example of improper extraction, look no further than the stock market.

There are thousands of data points that stock analysts look at before they make trades or recommend people buy something. So there are a lot of things that they can omit to make certain company stock look better or worse overall.

But I think something that is very easy to mislead readers with is stock price. For example, take a look at the graph below, which shows that Twitter has been on an large upward swing.


misleading graphs


As an outsider looking in, with just this graph at my disposal, I would think that they have been doing something right lately!

But I would be mistaken…


misleading graphs


They have been on an unprecedented slide for the past year or so, and that increase is just a tiny blip on the long term graph.

Now, if I were a less than honest stock trader, I could try to unload a ton of Twitter stock just by using that graph.

And this type of misinformation could be used to manipulate about any piece of data you want to fit your goals.

Like this example, which tried to justify climate change not being real:


misleading graphs


Mostly because people do not want to take a look at the raw data and they see graphs as a beacon of honesty.

I mean, why would someone lie on the internet, right?


4. Using The Wrong Graphs

So far, I have talked about intentional misinformation tactics that writers use to push their agendas.

Now I think we should take a look at types of misinformation that can happen through sheer incompetence.

This usually involves picking a type of graph or chart that does not fit the data you are trying to present. And more often than not, the misunderstood pie chart is to blame for this.

It is not the pie chart’s fault that it can be so misleading–it’s the people who think it can be used for any and every type of data.

For example, take a look at this pie chart from the NFL Draft:


misleading graphs


I am not sure what they were trying to do with this chart but as a multibillion dollar company, they should have a competent graphics person.

First, in what world is 64 prospects half of 69 prospects? And second, why did they not use a bar graph for this data?

If you were scrolling through your Twitter feed and saw misleading graphs like this, it would make sense that you thought USC blew the others out of the water.

But if they wanted to share a more accurate graph, they should have created a column chart like this:


misleading graphs

It may not be as flashy as the first one but at least it is accurate.

Another way brands can be unwittingly deceptive is by trying to be too “innovative” with their graphs or charts.

In this example from Microsoft below, by trying to be conceptual, they created a misleading data visualization:


misleading graphs


Even if Microsoft Edge is faster than Chrome or Firefox, it is just by a slight margin. Not around 25% faster than Chrome or 50% faster than Firefox, as the visualization would lead you to believe.

They should have used a column chart if they wanted to be accurate with their data:


misleading graphs

Or if they still wanted to use something a little less boring, they could have gone with a bubble chart like this:


misleading graphs

Since I gave the pie chart a bit of grief above, I’m going to show a place that it definitely should have been used!

In the example below, The Intercept was trying to show how the Russia issues have taken over  news lately:


misleading graphs


It fell just a little bit short, mainly because the labels they chose are not very descriptive.

And unless you calculated it yourself, you were left guessing what the actual split was between the two.

If I was creating this visualization, I would have gone straight to the pie chart:


misleading graphs

Not only does it include the same information, it makes it easy for someone to quickly spot the difference.

Helping readers quickly understand the data should be the goal of any data visualization.


5. Altering Norms

To conclude our list of misleading data visualization tactics, I thought it would be a good idea to look at misleading graphs and charts that alter long-held conventions or associations.  

If you are a little confused with what I am talking about, think about a graph where red represents Democrats and blue represents Republicans.

It would be pandemonium!

Or a simpler example is using green for losses, and red for profits.

That would make no sense to a competent graph maker, but would be a great tool to manipulate an audience.

In this map about STI rates across the country, they choose to use a dark color to denote low levels and a light color for high levels:


misleading graphs


This use of color goes against almost every map data visualization I have even seen. So I do think it was created to intentionally mislead the reader.

And to make things even more mind-boggling, the higher the number is, the lower the rates are, supposedly. So the map is confusing all around, which could make someone rightly think that Idaho is a hotbed for STIs, when it is really the southern states.

Here is an example of how a map like that should have looked (we didn’t have access to the raw data to recreate the map, so we found something similar):


misleading graphs


The dark colors are used to denote high values and the light ones are low ones.

Next we have a graph where the writer wanted to outright push a false idea to its audience. Honestly, it is one of the most egregious graph manipulations I have ever seen because of how blatant their intent was.

They actually flipped a graph upside down. This made it look like gun deaths were going down when in reality, gun deaths were spiking after the Stand Your Ground law was enacted:


misleading graphs


See what I mean? This was done to push an agenda.

A simple rotation and mirroring of the graph will show you what it should have looked like:


misleading graphs

There! Good as new, well…kinda.

And for our final example, we have one from our favorite data manipulators, Fox News.

Why don’t you take a look at why this graph made this list?


misleading graphs


Did you spot it? If not, I don’t blame you because I am guessing many of their viewers missed it too. And they are counting on that.

If you take a look at the x-axis, you will see that they choose to include a bunch of random time values for their graph. It’s not like they just left a few months or quarters out of the graph at random–they purposefully chose those quarters to fit their narrative. You could also consider this an example of omitting data.

And the worst part about this example is not that it is a bad chart, but that they thought they could dupe their loyal viewers.

If a brand thinks so little of your intelligence that they push bad graphs on you, I would recommend finding another source.



Would you have guessed there were that many brands that play loose and fast with graphs?

Me neither!

As with any type of news story, I would recommend first checking where the graph is coming from and then taking a look at the data.

Like I said in the intro, most people sharing misleading graphs do not have your best interests in mind.

For example, if a graph that shows the benefits of coconut oil is being shared by a company that just happens to sell coconut oil, that graph may be skewed. Maybe look at some other sources before you order a case of it.

And if it is just one person or group sharing this particular graph, that is another red flag.

So be vigilant by always checking your sources, stay skeptical and if you feel like a writer is being misleading, call them out on it!

Do you want to learn more about picking the right charts for your data? Read this in-depth guide.

About Ryan McCready

Ryan McCready went to the University of Arkansas and graduated with a degree in economics and international business. Now instead of studying the economy he writes about everything and enjoys stirring the pot.